QMRA in the Built Environment

Charles N Haas
LD Betz Professor of Environmental Engineering
Head, Department of Civil, Architectural & Environmental Engineering
Drexel University
haas@drexel.edu

June 20 2016

doi:10.6084/m9.figshare.3443666
QMRA in the Built Environment

CN Haas

Outline

1. What is QMRA
2. Exposure Assessment
3. Dose Response
4. A Few Case Studies
5. Some Research Ideas/Needs
6. References
“Quantitative microbial risk assessment (QMRA) is a framework and approach that brings information and data together with mathematical models to address the spread of microbial agents through environmental exposures and to characterize the nature of the adverse outcomes. While most microbes are harmless or beneficial, some are extremely dangerous we call these Biological Agents of Concern (BAC). All BAC can cause serious and often fatal illness, but they differ greatly in their physical characteristics, movement in the environment, and process of infection. Ultimately the goal in assessing risks is to develop and implement strategies that can monitor and control the risks (or safety) and allows one to respond to emerging diseases, outbreaks and emergencies that impact the safety of water, food, air, fomites and in general our outdoor and indoor environments.”

source: http://qmrawiki.canr.msu.edu/index.php/Quantitative_Microbial_Risk_Assessment
Epi vs. QMRA

Epidemiology
- Focus on syndrome (often)
- Exposure variable can be qualitative
- Limited power unless effect $> 5\%$ above background

QMRA
- Focus on individual pathogen (often)
- Exposure variable is quantitative
- Can estimate low (as well as high) level incremental effects
Overall Risk Assessment Framework

Source: EPA Office of Research and Development.
What Is Exposure Assessment

- **What pathogen are we interested in?**
- **What is the dose (distribution)**
- **By what route(s)**
 - Inhalation
 - Ingestion
 - Fornites (→ mouth, → nose, → eye)
 - Dermal
- **How often**
How to Assess Exposure

- Direct concentration measurements
- Indirect concentration measurements (indicator correlations)
- Modeled concentrations
- Convoluted with intake distributions (or touch frequency, transference)

Probability distributions highly desirable
Model Basis

Biological Processes
- Ingestion/Inhalation – Retention
- *In vivo* transport and survival to reach an amenable target
- Successful multiplication – colonization
- Attain sufficient numbers to elicit infection or disease response

Modeling Concepts
- Models should consider discrete (particulate) nature of organisms (high variability at low dose)
- Models should be based on concept of infection from one or more ‘survivors’ of initial dose (birth-death models)
What is the dose?

- Average administered to a population
- Actual number an individual experiences
- Retention
- *In vivo* body burden after multiplication
What is a Response?

- Proportion of subjects administered a dose whom have discernible effects (excretion, infection, illness, death). Quantal.

- Probability that a single subject administered a dose will exhibit a discernible effect.

Other responses may be nonquantal (more attention is needed): rise in antibody levels, rise in fever . . .
What we know from single dose bolus experiments - total outcome

- All data are consistent with exponential or beta-Poisson model (non threshold, low dose linear) based on ingested/inhaled average dose
- Different competent host species can often be pooled based on actual inhaled/ingested dose

\[p = 1 - \exp(-kd) \]

\[p = 1 - \frac{1}{\Gamma(\alpha)} \int_0^d (1 + \frac{d}{N_{50}} (2^{1/\alpha} - 1))^{-\alpha} \, \text{d}x \]
What is “d” In the Indoor Air Context

\[\int C(t) R(t) \, dt \]

where \(R \) is respiration rate
Example Organisms With Dose Response Data

Bacteria
- *E. coli*
- *Salmonella*
- *Legionella*
- *Bacillus anthracis*

Protozoa
- *Giardia*
- *Cryptosporidium*
- *Toxoplasma*

Viruses
- Norovirus
- Echoviruses
- Coronaviruses (e.g. SARS)
- Influenza

Other
- Helminths
- Rickettsiae

Missing: fungi
Legionella, Japanese Spa Outbreaks

Animal dose response, estimation from water concentration

Mycobacterium tuberculosis - Aircraft

Markov-chain multi-zonal model given single passenger emitter
• Absolute doses are not currently possible with *omics

• We expect pathogens to be rare, so they may be under-represented

• Issue of viability

• Could an ecological epidemiological study be done to assess whether some “pattern” is predictive of particular adverse infectious outcomes? Essentially use an indicator approach.

• We know fungi can be infectious pathogens, and need more effort both in deducing quantitative occurrence as well as in dose response (data mining, animal models)
Readings

- Watanabe, T., T. A. Bartrand, T. Omura and C. N. Haas (2011). "Dose-Response Assessment for Influenza A Virus Based on Data Sets of Infection with its Live Attenuated Reassortants.” Risk analysis