Changing Indoor Microbial Environments to Benefit Human Health: What Do We Know?

Mark J. Mendell, PhD
Indoor Air Quality Section, EHLB, California Dept. of Public Health
Indoor environments are known to affect human health in many ways.
This presentation will very briefly review available findings on a number of relationships.

ENVIRONMENTAL factors (microbially-related)

ADVERSE HEALTH effects

BENEFICIAL HEALTH effects

Measured MICROBIAL TAXA/COMPOUNDS

Measured MICROBIAL COMMUNITY FACTORS
Environment factors (microbial-related) → adverse human health effects

- Observed dampness or mold → increased respiratory and allergic disease
 - Removal of dampness and mold → decreased health effects
 - if observed dampness/mold, ventilation (relatively dry outdoor air)* → decreased health effects
- Lower measured wall moisture → decreased asthma risk
- Disease transmitted from other occupants
 - From surfaces → more resp and GI infections
 - Cleaning/disinfection → reduces transmission
 - By aerosols → more resp infections
 - Increased ventilation, air filtration -→ reduces transmission only of long-range airborne
- (Non-farm environments . . .)

* This dilutes microbial exposures. Caution: increased ventilation with moist outdoor air may increase indoor dampness/mold.
Much evidence links “observed” indoor dampness or mold* to specific health effects

Do you see it or smell it?

<table>
<thead>
<tr>
<th>Health Effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IOM 2004</td>
</tr>
<tr>
<td>Asthma exacerbation</td>
<td>●</td>
</tr>
<tr>
<td>Asthma development (new)</td>
<td>●</td>
</tr>
<tr>
<td>Asthma, current</td>
<td>●</td>
</tr>
<tr>
<td>Allergic rhinitis</td>
<td>●</td>
</tr>
<tr>
<td>Eczema</td>
<td>●</td>
</tr>
<tr>
<td>Bronchitis</td>
<td>●</td>
</tr>
<tr>
<td>Respiratory infections</td>
<td>●</td>
</tr>
<tr>
<td>Wheeze</td>
<td>●</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>●</td>
</tr>
<tr>
<td>Cough</td>
<td>●</td>
</tr>
<tr>
<td>Upper resp tract symptoms</td>
<td>●</td>
</tr>
</tbody>
</table>

*Observed Dampness or Mold:

- Visible mold
- Mold odor
- Moisture/dampness
- Water damage

Key

- ● Sufficient evidence for causation
- ○ Sufficient evidence for association
- ○ Limited or suggestive evidence for association
- --- Not assessed
Observed dampness and mold are consistently linked to increased risks for multiple respiratory and allergic effects.

- **Asthma exacerbation**
- **Asthma development**
- **Respiratory infections**
- **Allergic rhinitis**
- **Eczema**

Lack of consistent associations with microbial measurements not understood.

- **Specific causal agent(s) not identified**

- **Allergic and non-allergic mechanisms likely**

- **Per available evidence, remediating observed D/M is beneficial to health**

Do you see it or smell it?

Evident dampness or mold

Measured microbial factors
Example: A 3-level index of visible mold and water damage was strongly dose-related to respiratory effects, in 4 analyses

![Bar chart showing Dampness/Mold Index Levels (four studies)](image)

- **No Dampness/Mold**
 - No D/M indicators:
 - water damage
 - visible mold
 - mold odor
 - history of visible mold or water damage

- **Low Dampness/Mold**
 - At least 1 of 4 indicators, but below size thresholds for HIGH

- **High Dampness/Mold**
 - Visible mold ≥0.2 m² in one room OR visible mold + water damage ≥0.2 m² on one surface

NOTE:
- wheeze + atopy – both compared to neither;
- wheeze if atopy – wheeze vs. none, only among atopic subjects
BUT: Farm environments have consistent beneficial effects, protecting children from developing asthma and allergy.
We do not understand the specific exposures or mechanisms related to effects of D/M or farm environments.
Farm environments → beneficial health effects: proposed mediators

- **Traditional farming environments:** specific beneficial factors (in utero or early childhood) reduce asthma, atopy, hay fever . . .
 - Animal sheds, stables, cattle, pig-keeping, number of different animal species
 - Hay, hay lofts, silage (paradox)
 - Grain and associated activities
 - Farm milk (drinking unpasteurized)
 - Large family (independent of farming)

- **Farm house dust** reproduces effects in mice (unless no immune signaling molecules)\(^1\)

- **Low-dose endotoxin** may be a key factor\(^2\)
 - Same effects as farm dust in mice (unless x’ed A20)
 - Reduces lung cytokines that lead (thru induced A20 enzyme) to type 2 immunity/sensitization

\(^1\) Stein 2016 NEJM 375:411-21; \(^2\) Schuijs 2015 Science 349:1105-10
Non-farm environments ➔ beneficial health effects

- Dog exposure in early infancy ➔ altered house dust ➔ altered gut microbiome including *Lactobacillus johnsonii*, which protected mice against respiratory allergen challenge and viral infection and improved immune parameters\(^1\)
- Less developed countries ➔ more matured immune response in infants\(^2\)
- Neither personal or home cleanliness ➔ risk of asthma or allergies (but did influence dust parameters)\(^3\)
- Non-air-conditioned office buildings ➔ reduced building-related respiratory and other symptoms\(^4\)

Environmental factors \rightarrow indoor microbial communities

- Living on farms \rightarrow greater microbial diversity1,2
- Pets or dogs indoors \rightarrow greater bacterial diversity and higher relative abundance of dog-associated taxa3,4
- Suburban vs. urban, leaks, wall moisture, flooding, longer AC use \rightarrow greater fungal richness4,5,6
- Higher outdoor ventilation rate reduced relative abundance of human pathogen-like bacteria7

1 Birzele 2016 Allergy (advance E-pub); 2 Stein 2016 NEJM 375:411-21
3 Dunn 2013 8:e64133; 4 Dannemiller 2016 Indoor Air 26:179-92
Environmental factors ➔ measured indoor microbial taxa

- Living on farms ➔ higher endotoxin\(^1\)
- Farming ➔ in dust, *Clostridium* *spp*, *Facklamia* *spp*, *Ruminococcaceae* (family), and others\(^2\)
- Greater occupant density ➔ *Lactobacillus johnsonii* and other beneficial taxa\(^3\)
- Specific human microbiota ➔ predominant influence on occupied home microbiome\(^4\)

\(^1\) Stein 2016 NEJM 375:411-21; \(^2\) Birzele 2016 Allergy (advance E-pub);
\(^3\) Dannemiller 2016 Indoor Air 26:179-92; \(^4\) Lax 2014 Science 345:1048-52
Measured indoor microbial factors (community/taxa/compounds) \rightarrow adverse health effects

- Low bacterial diversity e.g.,\(^1\)
- High bacterial richness\(^2\)

- (No specific taxa yet consistently linked)
- Hydrophilic fungi (QPCR, culture) \rightarrow asthma\(^3,4\)
- *Penicillium* and total fungi in air (culture) \rightarrow asthma exacerbation\(^5\)
- Summed allergenic fungal species, total fungi and *Volutella spp* (fungus) concentrations \rightarrow asthma severity\(^1\)
- Endotoxin, glucan \rightarrow wheeze\(^6\) (but also beneficial)
- Muramic acid (Gram-positive bacteria) \rightarrow in mice, increased immunotoxic potential\(^7\)

\(^1\) Ege 2011 NEJM 364:701-9; \(^2\) Dannemiller 2016 JACI 138:76-83; \(^3\) Reponen 2012 JACI 130:639-44; \(^4\) Park 2008 EHP 116:45-50; \(^5\) Kanchongkittiphon 2015 EHP 123:6; \(^6\) Mendell 2011 EHP 119:748-756; \(^7\) Huttunen 2016 Indoor Air 26:380-390
Measured indoor microbial factors (community or taxa) \rightarrow beneficial health effects (= reduced asthma/allergy/wheeze)

- Greater microbial diversity1,2,3,4
- Index of farm-like bacteria (explained entire farm effect)!5
- Specific bacteria
 - *Listeria monocytogenes, Bacillus spp, Corynebacterium spp; Acinetobacter spp, Lactobacillus spp, Neisseria spp, Staphylococcus sciuri, Jeotgalicoccus spp, Corynebacterium spp, Firmicutes and Bacteriodetes; Mycobacterium spp, Bifidobacteriacaea spp, Clostridium spp*1,3,6,7
- Specific fungi
 - *P chrysogenum, Pseudotaeniolina globose; Eurotium; Aureobasidium pallulans, Penicillum and Aspergillus spp.1,4,8,9,10
- Glucans, endotoxin, muramic acid11,12 (but also adverse!)
- Total microbial markers13

Currently known biologic mechanisms cannot explain the epidemiologic observations

- **Some** early microbial exposures **reduce** later atopy and asthma
 - can also **increase wheeze**¹
- **But** dampness/mold consistently **increase** respiratory risks in infants, children, and adults² (so not all early microbial exposures good)

¹ Celedon 2007 JACI 120;120:144-9; ² Mendell 2011 EHP 119;748-56
Positive and adverse effects from indoor microbial exposures are likely to be through different mechanisms

- **Dampness/mold**
 - Specific sensitization by antigens, for atopic
 - Pro-inflammatory effects of microbial compounds (e.g., glucans, endotoxin . . .) in non-atopic and atopic

- **Farms and beneficial exposures (animals, feed, dogs, children)**
 - General benefit of diverse microbial exposures?
 - Specific beneficial taxa or microbial compounds?
 - Positive influence on developing immune system\(^1\)
 - May involve changes in human gut/lung microbiome

\(^1\) von Mutius 2016 JACI;137:680-9
Summary: Microbial factors and exposures in buildings and associated health effects

<table>
<thead>
<tr>
<th>Environmental Influence</th>
<th>Health Effects</th>
<th>Specific Microbial Agents?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor Dampness or Mold (observed)</td>
<td>Increased new asthma, asthma exacerbation, allergic rhinitis, respiratory infections</td>
<td>Not determined, possibly: hydrophilic fungi, beta glucans; (bacteria \rightarrow) endotoxin, muramic acid</td>
</tr>
<tr>
<td>Presence of air conditioning systems in offices</td>
<td>Increased Building-related symptoms (sick building syndrome), especially breathing symptoms</td>
<td>Not definite that microbially caused, but inapparent microbial growth on cooling coils seems most likely cause</td>
</tr>
<tr>
<td>Disease Agents on indoor surfaces</td>
<td>Increased respiratory and gastrointestinal infections</td>
<td>Virus and bacteria; e.g., Norwalk virus, Staphylococcus aureus, influenza virus, rhinovirus</td>
</tr>
<tr>
<td>Disease Agents in indoor air</td>
<td>Increased respiratory infections (illness absence)</td>
<td>Virus and bacteria; e.g., influenza virus, rhinovirus, tuberculosis</td>
</tr>
<tr>
<td>Lack of diverse microbial exposures</td>
<td>Increased asthma and allergy</td>
<td>Less diverse bacterial and fungal communities</td>
</tr>
<tr>
<td>Lack of farm-like environment (animals, feed)</td>
<td>Increased asthma and allergy</td>
<td>Lack of specific animal-associated and feed-associated bacteria (and fungi)</td>
</tr>
</tbody>
</table>
Intentionally making the indoor environment and microbiome healthier for occupants will be challenging

- Document causation (difficult) before designing interventions?
- Benefits from diversity or from specific unusual exposures?
- Target optimal ages?
- Is the human microbiome the ultimate target?
- In changing building design, materials, operation or maintenance:
 - Reduce adverse exposures (D/M)?
 - Increase beneficial exposures?
- Difficult to identify/provide all missing beneficial factors
- Best to create self-sustaining beneficial processes (e.g., as with human fecal transplants)
Available knowledge suggests intervention ideas for changing indoor microbiomes to improve health

<table>
<thead>
<tr>
<th>Environmental Influence</th>
<th>Potential Intervention</th>
<th>Strength of Evidence</th>
</tr>
</thead>
</table>
| Indoor Dampness or Mold → allergic, respiratory, and infectious disease | • Remove moisture source
• Dry/remove wet materials
• Clean/remove moldy materials

• if D/M observed, increase ventilation with relatively dry outdoor air* to dilute microbial exposures | Accepted current practices (much observational evidence + 1 intervention study, but limited data)

Limited/suggestive evidence (3 observational studies) |
| Presence of air-conditioning systems in offices → building-related symptoms | • (GUV irradiation of air-conditioning cooling coils?) | Much evidence of observed correlation; limited intervention evidence (1 study) of microbial causality and GUV efficacy |
| Disease Agents on indoor surfaces → respiratory or gastrointestinal infections | • Clean/disinfect often-touched surfaces (current anti-bacterial products ineffective) | Accepted current practice |
| Disease Agents in indoor air → infectious respiratory disease | • Isolation
• Increased outdoor air ventilation
• Increased particle filtration in recirculation | Accepted current practices in health care settings; Limited/suggestive evidence for general buildings |
| Lack of diverse microbial exposures → asthma/ allergy | (Add diverse microbial cocktail??) | Limited, observed correlations only |
| Lack of farm-like environment (animals, feed) → asthma or allergy | (Add farm-like microbial cocktail??)
(Barn-fecal transplants to homes??)
(Barn/home carpet rotation cycle??)
(Indoor cattle, pigs as pets??)
(Hay-based furniture??) | Limited, observed correlations only |

* Caution: increased ventilation with moist outdoor air can increase indoor dampness/mold
Questions?