Multivalent Systems: The New Frontier in Battery Research

Stan Whittingham et al @ Binghamton
An Intercalation-based Lithium Battery Cell
1970s Technology (= Structure Retention).

\[x\text{Li} + \text{TiS}_2 \text{ gives } \text{Li}_x\text{TiS}_2 \]

Kang Xu, Chem. Rev., 2004
An Intercalation-based Lithium Battery Cell
1970s Technology (= Structure Retention).

Kang Xu, Chem. Rev., 2004
Cathode Status 2019: Li-Ion Intercalation Batteries

Li$_x$TiS$_2$ \rightarrow Li$_x$MoS$_2$ \rightarrow Li$_x$CoO$_2$ (NMCA et al) \rightarrow Li$_x$FePO$_4$

$\text{+ Li} \rightarrow$ Graphite (LTO/LNbO) \rightarrow Si, Sn, or Li

Li-Ion dominates portable and grid application

>92% of grid battery storage is Li-ion (dwarfed by pumped hydro)

Almost 100% of EVs are Li-ion

All rechargeable portable devices are Li-ion

NMC Cathode dominates: Li[NiMnCoAl]O$_2$

622 is common composition (drive to decrease Co still further)

Most expensive component of battery

LiFePO$_4$ most stable cathode

Can we have a two electron cathode?
Why a multi-electron (multi-valent) intercalation cathode?

A multi-electron cathode:
- Cuts amount of TM needed
 - Reduces cost
 - Increases energy density by 50-70%
- Challenges
 - Will the structure tolerate a 2e change?
 - Phosphates are more stable
 - Is the voltage change tolerable?
 - For user, and for electrolyte stability
- Mobile ion options
 - I: 2 Li or 2 Na
 - II: 1 Mg, Ca or Zn
- Redox-active cathode options
 - V (5\(^+\)-3\(^+\)), Ni (4-2), Mn (4-2), [Fe (4-2)]
 - O, PO\(_4\), S, F, etc
A **multi-electron cathode:**

- Cuts amount of TM needed
 - Reduces cost
 - Increases energy density by 50-70%
- Challenges
 - Will the structure tolerate a 2e change?
 - Phosphates are more stable
 - Is the voltage change tolerable?
 - For user, and for electrolyte stability
- Mobile ion options
 - **I:** 2 Li or 2 Na
 - II: Mg, Ca or Zn
- Redox-active cathode options
 - V (5⁺-3⁺), Ni (4-2), Mn (4-2), [Fe (4-2)]
 - O, PO₄, S, F, etc

Prior Results
DOE-supported researchers made key advances in battery science and technology in 2018. For the first time, researchers at a DOE Energy Frontier Research Center reversibly inserted and extracted two lithium ions from a multi-electron lithium ion battery cathode, with full recovery upon recharging—a capability that could greatly increase battery capacity.

I: Are 2 Li-Ion Intercalation Cathodes Structurally Viable? YES

LiₓTiS₂ → LiₓMoS₂ → LiₓCoO₂ (NMCA et al) → LiₓFePO₄ → LiₓVOPO₄

2018 Report
Feb 2019

R&D Fundamentals

Advancing the state of battery science. “DOE-supported researchers made key advances in battery science and technology in 2018. For the first time, researchers at a DOE Energy Frontier Research Center reversibly inserted and extracted two lithium ions from a multi-electron lithium ion battery cathode, with full recovery upon recharging—a capability that could greatly increase battery capacity.”

DOE Ten at Ten Award
July 2019
Why a Multi-electron ε-VOPO$_4$ Cathode?

MOTIVATION

- Stable PO$_4$ structure, eg LiFePO$_4$
- But > one Li$^+$ intercalation > ED
- Multiple redox potentials accessible

$$\varepsilon\text{-VOPO}_4 \leftrightarrow \varepsilon\text{-Li}_2\text{VOPO}_4$$

Why a Multi-electron ε-VOPO₄ Cathode?

MOTIVATION

- Stable PO₄ structure, e.g. LiFePO₄
- But > one Li⁺ intercalation > ED
- Multiple redox potentials accessible

SYNTHESIS

VCl₃ and P₂O₅ in 95% ethanol

Hydrothermal
180°C for 3 days

Monoclinic H₂VOPO₄

Heat Treatment
550°C for 3 hours
ε-VOPO₄ can be chemically lithiated to ε-Li₂VOPO₄

Only 8.5% volume increase; 328.14 to 356.05 Å³
Small cuboid particles

ε-VOPO$_4$ particles
~100-200 nm
Cuboid particles
Small cuboid particles allow two Li ions to be reversibly intercalated.

\[\varepsilon\text{-VOPO}_4 \text{ particles} \]

\[\sim 100-200 \text{ nm} \]

Cuboid particles

Proof of principle achieved
High Voltage Region
3.0 – 4.5V
Two-phase reaction
VOPO$_4$ + LiVOPO$_4$

Substitute, like LiFePO$_4$, to increase rate capability by changing phase diagram
Kinetics quite different for the two plateaus

High Voltage Region
3.0 – 4.5V
Two-phase reaction
VOPO$_4$ + LiVOPO$_4$

Substitute, like LiFePO$_4$, to increase rate capability by changing phase diagram

Low Voltage Region
1.6 – 3.0V
Single phase reaction
Li$_{1+x}$VOPO$_4$
Learnings from ε-VOPO$_4$

- Two Li ions can be reversibly intercalated into a crystalline lattice without damage to lattice
- Rate capability very different for the two voltage plateaus; need single phase reactions

VOPO$_4$ can intercalate > 1 Na ion

- There are more than 7 “VOPO$_4$” phases
- Na needs more open lattice than that of ε-VOPO$_4$
 - K can also be cycled
 - Mg is not rechargeable
Na intercalates reversibly into K_yVOPO_4

ε-VOPO$_4$

85.51Å3/PO$_4$

KVPOPO$_4$

106.8Å3/PO$_4$

Challenge? How to get all the K out

$KVOPO_4$: A New High Capacity Multielectron Na-Ion Battery Cathode

II: Are Multiple Charged Ions Viable for Intercalation Cathodes? Yes, but…

A multi-electron cathode:
• Cuts amount of TM needed
 • Reduces cost
 • Increases energy density by 50-70%
• Challenges
 • Will the structure tolerate a 2e change?
 • Phosphates are more stable
 • Is the voltage change tolerable?
 • Use, and electrolyte stability
• Mobile ion options
 • I: 2 Li or 2 Na
 • II: Mg, Ca or Zn
• Redox-active cathode options
 • V (5⁺-3⁺), Ni (4-2), Mn (4-2), [Fe (4-2)]
 • O, PO₄, S, F, etc

Prior Results/Learnings
• LiTiS₂
 • Soft lattice
 • Metallic conductor
 • Two structures
 • Layered (MSW)
 • Spinel (JBG)

LiₓTiS₂ → MgₓTiS₂
The original Li-ion cathode had some unique properties?

TiS$_2$ has a layered structure

- Semi-metal
- Mixed conductor
- Li$_x$TiS$_2$, where 0 ≤ x ≤ 1

10 mA/cm2
No carbon black

TiS$_2$ is almost ideal cathode
- No need for CB conductor
- No phase transition
- Very fast ion conductor
- Can these properties be found in a 4 V cathode?
- Works well for Mg too
 - Mg$_{0.5}$TiS$_2$
 - Van der Ven and Nazar
 - 2016/2017

Figure 1
Theory shows 1 volt penalty for Mg vs Li intercalation: 1 Li vs 1 Mg in TiS$_2$

Theory – Anton van der Ven

- 1 volt penalty for Mg
Experiment confirms theory and shows $\text{Mg}_x\text{Ti}_2\text{S}_4$ very reversible.

Theory – Anton van der Ven
- 1 volt penalty for Mg

Experiment – Linda Nazar
- Confirms theory
- Highest Mg capacity to date (Chevrel-Aurbach)

$\text{Mg}_{60^\circ C}$
0.04 mA/cm2

$60^\circ C$
Mg not competitive with Li in titanium disulfide

Theory – Anton van der Ven

➤ 1 volt penalty for Mg

Experiment – Linda Nazar

➤ Confirms theory
➤ Highest Mg capacity to date

Mg
60°C
0.04 mA/cm²

ED Li 2x Mg

Li
21°C
10 mA/cm²
SW-1976
Conclusions - Multivalent Systems: The New Frontier in Battery Research

- **Intercalation Reactions**
 - Lithium: Proof of concept achieved
 - Sodium: OK, but low voltage
 - **Magnesium not attractive option**
 - No evidence yet that Mg can transfer more than 1 electron/TM (=1/2 Mg)
 - Mg readily grows dendrites
 - Mg moves very slowly, and high voltage penalty
 - Calcium more attractive than magnesium
 - Potential closer to Li; phase behavior expected to be like Na
 - But many many challenges/opportunities

- **Conversion Reactions**
 - Lithium not looking promising: FeF$_2$, FeF$_3$, CuF$_2$, FeOF
 - Li/Na/Mg S interest waning
 - Li/O$_2$ no interest
 - Metal/organic – Abruno

- **Solid State Batteries**
 - Will be very tough for Mg or Ca
 - Need **Fundamental studies** of transport, thermodynamics, structure prediction; e.g. Mg vs Ca vs Zn