Challenges and Approaches for Mixtures in Risk Assessment

George Daston
Introduction

• Increasing pressure to more routinely conduct cumulative risk assessment for exposures to multiple chemicals

• Challenges in identifying which agents should be combined
 – Common mode of action?
 – Common pathway?
 – Do co-exposures occur?
Recent NAS Reports and Recommendations

• Phthalates and Cumulative Risk Assessment
 – Suggests that cumulative assessments be considered for agents that produce the same types of health outcomes

• Science and Decisions (silver book)
 – Recommends combining chemical and non-chemical stressors, increase use of biomonitoring data
Basis for the Phthalates Report Recommendation

- Phthalates inhibit testosterone synthesis in the fetus, affecting male reproductive development
- Effects are comparable to those produced by androgen receptor antagonist, a different mechanism
Testosterone: Mechanism of Action

Androgen-responsive genes

Transporters Extracellular matrix Receptors Enzymes

Cellular Response

Specific mRNAs (Up- or Down-regulated)
Biotechnology to Identify Common MOA or Pathways

- Microarrays/toxicogenomics
- High-throughput screening
Time and dose response of gene expression changes induced by chemical exposure
Chemical Comparison

<table>
<thead>
<tr>
<th>Chemicals comparison / # of common Activities</th>
<th>All 10 Chemicals</th>
<th>DEHP & DINP</th>
<th>Acet & DEHP</th>
<th>Acet & DINP</th>
<th>Clof ib & DEHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Processes</td>
<td>37</td>
<td>137</td>
<td>73</td>
<td>69</td>
<td>78</td>
</tr>
<tr>
<td>Canonical Pathways</td>
<td>6</td>
<td>37</td>
<td>14</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Cellular Component</td>
<td>13</td>
<td>36</td>
<td>38</td>
<td>31</td>
<td>21</td>
</tr>
<tr>
<td>KEGG Pathways</td>
<td>6</td>
<td>14</td>
<td>12</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Molecular Functions</td>
<td>16</td>
<td>60</td>
<td>40</td>
<td>37</td>
<td>39</td>
</tr>
</tbody>
</table>

Common biological activity: hepatotoxicity, but closer structural analogs show higher degree of similarity
ToxCast

• Program to test high number of chemicals in high-throughput mode
• 500+ assays
 – Biochemical
 • Receptor binding
 • Enzyme inhibition
 – Cellular
 – “pathway”
Grouping the ToxCast assays by disease/ pathway

Pathways & Diseases In Vivo
Chemical, biological and statistical
ToxPi: looking for signals of biological activity

\[
\text{ToxPi} = \sum_{i=1}^{I} w_i \cdot \text{assay}_i + \sum_{c=1}^{C} w_c \cdot \text{chemProp}_c + \sum_{p=1}^{P} w_p \cdot \text{pathway}_p
\]

\text{ToxPi} = f(\text{in vitro assays} + \text{chemical properties} + \text{pathways})
The Contribution of Biomonitoring to Cumulative Assessment

• To which chemicals are we concurrently exposed?
• At what concentration (especially in relation to RfD)?
Workshop Overview

• Concepts and grounding
• Emerging science
• Case studies
• Discussions of research needs and regulatory implications
• Synthesis of scientific disciplines in an attempt to find novel approaches to a persistent question