Microphysiological Modeling of the Female Reproductive System: Implications for Toxicity Testing and Understanding Disease Pathophysiology

J. Julie Kim, Ph.D., Joanna E. Burdette, Ph.D.
Mary Ellen Pavone, M.D., Teresa K. Woodruff, Ph.D.

Northwestern Reproductive Sciences
Department of Obstetrics and Gynecology
Feinberg School of Medicine
Northwestern University, Chicago IL

UH2/UH3 Funded Research Program: UH2ES022920
Overview

1. Why the Female Reproductive Tract?
2. Building and testing the Repro *in vitro* systems
3. Integration - FemKUBE
4. Beyond the FemKUBE
The Female Reproductive Tract

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences
Research in the Female Reproductive Tract is limited

- Ethical issues associated with research in women of reproductive age/pregnancy
- Vast species differences in reproductive processes
 - The human model is the best model for human reproduction

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences
Female reproductive hormones influence the whole body

- Ovary, Fallopian tubes, uterus, cervix
- Breast
- Heart
- Bone
- Liver
- Brain
- Gastrointestinal system

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences
Preclinical and clinical research are done in males

"We don't study females... Their menstrual cycles would mess up our results."

The female is very complex
- menstrual phases
- pre- and post-menopausal states,
- pregnant women

In the past decade, 8 of the 10 drugs that were pulled from the market for being unsafe were found to have more serious side effects in women than in men

Women - higher rates of anxiety and dementia
Men - greater likelihood of autism and Parkinson's disease

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences
Ex-Vivo Female Reproductive Tract: Reproductive Toxicology and Drug Testing

- Early Testing of Drugs
 - Reduce sex bias in pipeline
 - Increase safety of drugs
- Sex Specific Drug Metabolism
- Gestating Uterus Drug Development
- Contraceptive Design and Targets
- Environmental Health Toxin ID
- Vaccine Development
- Mechanisms of Cancer Prevention and Therapy

Laronda et al. *Stem Cell Research and Therapy*, 2014
The Reproductive Tract Is An Integrated System With Functional Hallmarks That Can be Modeled *In Vitro*

Primate Reproductive Tract

FemKUBE Integration:
NU/MIT/Draper Gen 0.3W

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences
The Hormonal Changes of the Menstrual Cycle
Growing Reproductive Tract Tissues In Vitro

Teresa Woodruff

Joanna Burdette

Julie Kim

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences
Recapitulating Ovarian and Endocrine Changes of the Human Menstrual Cycle *In Vitro*

Characterize Hormonal Responses in Vitro

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences
OvaryKUBE: Human Follicle 3D Culture in Alginate

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences
OvaryKUBE Validation and Functional Assay: In vitro Human Follicle Hormone Profile (N=5)

A

B

C

D

E

F

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences

Yuanming Xu, Teresa Woodruff
OvaryKUBE: Using 3D Mice Multiple Follicle Culture to Phenocopy the Hormones of the Human Menstrual Cycle
OvaryKUBE: Applications of *In Vitro* Follicle Growth (IVFG) system

Source of ovarian hormones

Testing of compounds that affect follicles

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences

Yuanming Xu
OvaryKUBE Validation of Compounds: In Vitro Follicle Growth (IVFG) Provides a Method of Predicting Reproductive Outcomes in Mammals in Response to Environmental Exposures

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences
Effect of chemotherapeutics known to have adverse reproductive effects on Follicles *In Vitro*

- Cyclophosphamide (CTX)
- Cisplatin (CDDP)

![Graph A](image1)

![Graph B](image2)
Effect of Corexit 9500 on Follicles *In Vitro*

- Corexit 9500

Graph:
- Y-axis: Percent survival
- X-axis: Culture time (days)
- Graph showing survival rates for different concentrations over time.

Images:
- Comparative images for different days (Day 0, Day 4, Day 6) showing follicles at various concentrations (Control, 25 ppm, 50 ppm, 75 ppm).

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences
Effect of Nalbuphine on Follicles *In Vitro*

- Nalbuphine (analgesic)
TubeKUBE: Human Fallopian Culture
TubeKUBE: Cilia Beating
TubeKUBE: Hormonal Regulation of Cilia Beating

Ctrl

E2 1nM

E2 1nM + P4 10nM

E2 0.1nM + P4 50nM

Kim, Burdette, Pavone, Woodruff Northwestern Reproductive Sciences
TubeKUBE:
Hormonal Response to Secreted Factors

OVGP1

IGF1

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences

Jie Zhu
 TubeKUBE: Testosterone Alters Hormonal Responses

E2 1nM

E2 1nM + T4 100nM

OVGP1

hIGF1

α-tubulin

Jie Zhu
Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences
UteroKUBE: Human Myometrium and Endometrium

Proliferative stage endometrium

Myometrium

Endometrial epithelial and stromal cells

Myometrial cells

UteroKube

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences
CervixKUBE: 3D Human Endocervical Cultures

Control

E₂

E₂+P

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences

Sevrim Yildiz Arslan
CervixKUBE: Hormone Stimulation of Mucin Production

MUC16 (CA125)

Control

E2+P4

PAS (Red: neutral mucins)

Alcian Blue (Blue: acidic mucins)
CervixKUBE: Validation of Secreted Factors

- HGF
- IL-6
- LIF
- MCP-1
- MIP-1β
- TNF-α
- GRO-α
- IL-1α
- IL-1β
- IL-1RA
- PDGF-BB

Hormone levels

- Estrogen (E2)
- Progesterone (P4)

Time (days)

Proliferative phase

Secretory phase
Moving Static to Microphysiologic

Teresa Woodruff, Department of Obstetrics and Gynecology, Northwestern University

Linda Griffith, Ph.D., Department of Biological Engineering, School of Engineering, Massachusetts Institute of Technology,

Jeff Borenstein, Ph.D., Biomedical Engineering Center, Draper Laboratory

Kim, Burdette, Pavone, Woodruff, Northwestern Reproductive Sciences
Microphysiologic (MPS) Modules
- Plug-and-play module interface
- Media/collection MPS module
- Follicle MPS module
- Modules have 4 ports to support 2 separate flows

Fluidic Interface
- Connects modules to each other
- Can direct flow within modules
- Interfaces to actuator layer to pump fluid

Actuator Interface
- Pneumatic layer
- Air pressure drives the pumps by actuating the membrane located between the fluidic and pneumatic layers

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences

Jonathan Coppeta, Brett Isenberg Draper Laboratory
Jackie Shepard Northwestern University
In Vitro Hormone Delivery Mimics of the Fluctuating Estrous Cycle

Microfluidic Culture
- Real time delivery of hormones to downstream tissue
- Integration of tissues

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences

Jackie Shepard
Flexible Microfluidic designs

Diagram: Two syringes connected to a network of blocks labeled 'Foll', 'Tube', 'Ut', and 'Cerv'.
FemKUBE: Beyond the Female Reproductive Tract

• Disease Modeling

– Cancer - Endometrial, Ovarian, Breast
FemKUBE: Beyond the Female Reproductive Tract

• Disease Modeling
 – Leiomyoma

Kim, Burdette, Pavone, Woodruff
Northwestern Reproductive Sciences
FemKUBE: Beyond the Female Reproductive Tract

• Disease Modeling
 – HIV transmission/Vaccines
FemKUBE: Beyond the Female Reproductive Tract

- Pregnancy Modeling: Placenta
- Liver
- Bone
- DudeKube
FemKUBE: Challenges and solutions

• Human tissue availability
 – iPS cell differentiation into reproductive tract tissues

• Optimizing 3D cultures
 – Decell ECM and bioplotted scaffolds
FemKUBE Team

- PI: Teresa K. Woodruff (OvaryKube)
 - Jie Zhu
 - Yuanming Xu
- Julie Kim (UteroKube and CervixKube)
 - Yanni Yu
 - Sevim Yildiz Arslan
- Joanna E. Burdette (TubeKube)
 - Jie Zhu
- Mary Ellen Pavone
 - Stacy Druschitz
 - Saurabh Malpani
- Suzanne Banuvar
- Beth Sefton

- Draper Labs
 - Jeff Borenstein
 - Jonathan Coppeta
 - Brett Isenberg

- MIT
 - Linda Griffith
 - Jackie Shepard