Current state of marmoset population in Japan and exchange of the marmoset genetic resources

Erika Sasaki
Central Institute for Experimental Animals
History of Marmoset Research in Japan

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>Investigation of 12 kinds of small primates toward developing non-human primate models.</td>
</tr>
<tr>
<td>1981</td>
<td>Although 40 common marmosets were introduced from ICI, 30 were dead.</td>
</tr>
<tr>
<td>1983</td>
<td>60 marmosets have been introduced from ICI (UK).</td>
</tr>
<tr>
<td>1989</td>
<td>Characteristics and Experimental use of the common marmoset, Tanioka et al.</td>
</tr>
<tr>
<td>2005</td>
<td>Establishment of ES cell lines</td>
</tr>
<tr>
<td>2008</td>
<td>Strategic Research Program for Brain Sciences</td>
</tr>
<tr>
<td>2009</td>
<td>Development of transgenic marmoset</td>
</tr>
<tr>
<td>2010</td>
<td>Establishment of iPS cell lines</td>
</tr>
<tr>
<td>2011</td>
<td>New marmoset facility, Tonomachi</td>
</tr>
<tr>
<td>2012</td>
<td>Japan Society for Marmoset Research</td>
</tr>
<tr>
<td>2014</td>
<td>Brain/MINDS project</td>
</tr>
<tr>
<td>2016</td>
<td>Knockout marmoset by genome editing</td>
</tr>
<tr>
<td>2018</td>
<td>Marmoset lab manual</td>
</tr>
<tr>
<td>2020</td>
<td>Transfer breeding colony to CLEA Japan Inc.</td>
</tr>
<tr>
<td>2021</td>
<td>New marmoset facility, Tonomachi</td>
</tr>
<tr>
<td>2022</td>
<td>Disease models : Parkinson’s diseasese (MPTP), spinal cord injury</td>
</tr>
</tbody>
</table>

2008 Strategic Research Program for Brain Sciences

2010 Establishment of iPS cell lines

2014 Brain/MINDS project

2018 Marmoset lab manual

2016 Knockout marmoset by genome editing

2012 Japan Society for Marmoset Research

2011 New marmoset facility, Tonomachi

2009 Development of transgenic marmoset

2008 Strategic Research Program for Brain Sciences

2005 Establishment of ES cell lines

Disease models : Parkinson’s diseasese (MPTP), spinal cord injury

1996 Marmoset Handbook, Tanioka et al.

Transfer breeding colony to CLEA Japan Inc.

1989 Characteristics and Experimental use of the common marmoset, Tanioka et al.

1983 60 marmosets have been introduced from ICI (UK).

1981 Although 40 common marmosets were introduced from ICI, 30 were dead.
Image of the Marmoset demands and supplies in Japan

The numbers are not exact

Strategic Research Program for Brain Sciences (SRPB)

Over stock for 4 years, $500,000 loss every year

Brain/MINDS project

Available supplies
Demand
Number of supplies

The numbers are not exact

Courtesy of Mr. Fukasawa, CLEA Japan, Inc.
Transportation of marmosets

In Japan, marmoset is prohibited to import from France. This animal transportation difficulties make less genetic diversity in individual colonies.
Shipping embryos (or sperm) using dry shippers

“dry shippers” are designed to safely transport a variety of materials at cryogenic temperatures.

Don’t forget to get Export / Import approves for CITES before shipping !!
Sperm Cryopreservation

Centrifugation: 400Xg for 3min

Sperm swim-up

Suspend in 1mM dbcAMP+BO

IVF

<table>
<thead>
<tr>
<th></th>
<th>dbcAMP treat</th>
<th>Number of trals</th>
<th>Number of oocytes</th>
<th>Number of fertilized embryos</th>
<th>Fertilization rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flesh</td>
<td>-</td>
<td>11</td>
<td>72</td>
<td>34</td>
<td>47.2 %</td>
</tr>
<tr>
<td>Cryopreserved</td>
<td>-</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>7</td>
<td>36</td>
<td>8</td>
<td>22.2 %</td>
</tr>
</tbody>
</table>

Intracytoplasmic sperm injection (ICSI) is needed to obtain fertilized embryos

Courtesy of Prof. Sotomaru
ICSI requires special equipment and technics

Micro manipulator

Furthermore, ovarian stimulations, surgical ovum pickup procedures are also required

In vitro manipulated embryos are low efficiencies of cryopreservation….
Blood or urine sample collection on Day -1, 1, 9, 11, 13

Paired marmosets

Natural fertilized embryo collection

Ovarian cycles controls using PGF2α

Progesterone (ng/ml)

Days

Embryo Collection (P.O. 4-10)

PGF2a (Day 0)

PGF2a (Day 21)

Ovulation
Nonsurgical embryo collection

Thomson et al. J Med Primatology 1994
Comparison of successful rates among the embryo collection methods

<table>
<thead>
<tr>
<th></th>
<th>Number of times of collection</th>
<th>Times of successful collection</th>
<th>Number of collected embryos</th>
<th>Number of Abnormal embryos</th>
<th>Rates of successful collection</th>
<th>Average number of collected embryos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical</td>
<td>52</td>
<td>22</td>
<td>44</td>
<td>0</td>
<td>42.3%</td>
<td>0.85</td>
</tr>
<tr>
<td>Percutaneous</td>
<td>52</td>
<td>28</td>
<td>58</td>
<td>3</td>
<td>53.8%</td>
<td>1.1</td>
</tr>
<tr>
<td>Transvaginal</td>
<td>52</td>
<td>33</td>
<td>64</td>
<td>3</td>
<td>63.5%</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Vitrification of marmoset embryos and viability after thawing

![Graph showing viability of marmoset embryos after slow freeze and vitrification with different treatments.]

- **DMSO**
- **DAP213**
- **PEPeS**
- **Fresh**

Viability (%): 20, 40, 80, 120

- a, b: p<0.01

Viability after slow freeze and vitrification.
Nonsurgical embryo transfer
Artificial insemination in marmoset

Semen collection

50μl TYH + semen

Developed AI method without anesthesia

<table>
<thead>
<tr>
<th>Fertilization</th>
<th>Number of Embryo collection trial</th>
<th>Number of unfertilized embryo</th>
<th>Number of Fertilized embryos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural mating</td>
<td>13</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>AI</td>
<td>10</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Currently, only fresh semen can be applicable for this method
Acknowledgements

Central Institute for Experimental Animal

Yoko Kurotaki
Tsukasa Takahashi
Reiko Hirakawa
Yuko Yamada
Miyako Hamano
Tomoo Etoh

Takashi Inoue
Takayuki Mineshige

Juntendo University
Kisaburo Hanazawa

Hiroshima University
Yusuke Sotomaru