Industrialization of Biology

Session 7: Advanced Molecules

Michelle Chang
Departments of Chemistry and
Molecular & Cell Biology
UC Berkeley
29 May 2014

Chemical and biological catalysis

$$R-X + R'-Y \rightarrow R-R'$$

Some broad generalizations...

Chemistry Selectivity conferred by X and Y

Biology Selectivity conferred by R and R'

Expanding the biological reaction space

How do we integrate chemical and biological catalysis to design effective industrial-scale syntheses?

- Increasing the functional space of biologically-sourced small molecules (by accommodation or biosynthesis)
- Broadening the R group scope of known enzyme classes (e.g. ketoreductases)
- Designing or discovering new enzymes/active sites for chemical building blocks (e.g. diels alderases, crosscoupling reactions)

Can we take advantage of both the strengths of chemical and enzymatic synthesis?

Expanding the elemental composition of cells

Cellular systems have constructed an enormous range of function from a limited set of elements

The diversity of inorganic function is broad

Inorganic materials have a diverse range of functions that respond and interact with signals that are orthogonal to typical cells

control of elemental composition and structure

control over size and shape

Biomaterials: Nanoscale self-assembly

Novel material properties and functions emerge from nanoscale features

Addadi, Aizenberg, Belcher, De Yoreo, Dove, Kröger, Mann, Nagasawa, Weiner, Wilt, Veis, Zhang, and others

Synthetic biology and new materials

The best understood biomineralization systems involve the production of structural materials based on calcium (bone, nacre)

What about transition-metal based functions?

magnetotactic bacteria

unique chemical features

genetically-determined shape narrow size distribution (30-80 nm) single magnetic domain defectless

unique biological features

transition-metal based (magnetite)
mixed-valent
pure material (not composite)

Natural products and pharmaceuticals

cam

4,000-5,000 organohalogens

~20 organofluorines

rifamycin B

erythromycin A

20-30% pharmaceuticals contain F
3 out of 5 top-selling drugs

Fluorine and drug design

$$H_3C \cap NH_3^+$$
 pK_a 10.7

protonation state

lipophilicity

metabolism

dipolar interactions

Synthetic methods can limit our ability to incorporate fluorine into complex molecules

Synthetic biology of fluorine

natural pathways for biosynthesis of simple organofluorine precursors

engineered pathways for creating complex bioactive organofluorines

Some questions ...

- How do we identify common inefficiencies in synthetic chemistry related to stereo- or regio-chemistry?
- How do we determine whether chemical or biological steps are the most economical or resource-efficient?
- How do we design and optimize enzymes for new reaction spaces?
- How do we identify and rank the most effective semisynthetic routes?